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1 Introduction

1.1 Context

1.1.1 Image compression

The exponential growth of image data has made efficient image compression techniques increasingly
crucial. Image compression addresses the challenge of reducing file sizes while maintaining acceptable
visual quality, a balance that becomes more critical as high-resolution images become the norm.
Digital image compression can be broadly categorized into two approaches: lossless and lossy com-
pression. While lossless compression preserves all original data, lossy compression, such as the PCA-
based method discussed in this document, achieves higher compression rates by selectively discarding
less significant information.

1.1.2 Dimensionality reduction

Dimensionality reduction plays a pivotal role in image processing, particularly in compression appli-
cations. As images grow in resolution and color depth, they create increasingly large datasets that
pose challenges for storage, transmission, and processing. Dimensional reduction techniques help
address these challenges by:

1. Identifying and preserving the most significant features of the image

2. Eliminating redundant or less important information

3. Reducing computational complexity in subsequent image processing tasks

4. Optimizing storage requirements while maintaining image quality

1.2 Why PCA

Principal Component Analysis (PCA) stands out as an exceptionally effective technique for dimen-
sionality reduction, particularly in the realm of image compression. Unlike conventional methods
that focus on local features, PCA takes a comprehensive approach by identifying patterns and cor-
relations throughout the entire image. This global perspective enables the transformation of data
into a new coordinate system, where the principal components are aligned to capture the maximum
variance present in the image.

PCA also facilitates adaptive compression that aligns with the inherent structure of the image data,
ensuring that the most significant features are preserved. This approach not only enhances efficiency
but also provides a robust mathematical framework for determining which aspects of the image
should be retained during compression. Through these capabilities, PCA proves to be a powerful
ally in optimizing image representation while maintaining essential details.
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1.3 Objectives

1.3.1 Analyze the efficiency of image compression on different color channels

PCA’s compression efficiency isn’t uniform across color channels, therefore each channel is compressed
separately, with red requiring fewer components for similar fidelity due to its information richness,
while the green channel’s luminance is carefully preserved to maintain perceived brightness. This
analysis ultimately allows for channel-specific adjustments, like varying retained components, to
optimize compression efficiency while preserving visual quality.

1.3.2 Evaluate the quality of image reconstruction

Evaluating the quality of reconstructed images post-compression involves a combination of quanti-
tative and qualitative techniques, such as Mean Squared Error (MSE), Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity Index (SSIM) that provide objective measurements of image
fidelity. However, these metrics may not fully capture subtle visual differences and so visual com-
parisons are essential for assessing factors like color accuracy and edge sharpness. By considering
both quantitative metrics and qualitative assessments, there can be a comprehensive evalution of the
performance of PCA-based compression in preserving image quality while reducing file size.

2 Theoretical fundaments

2.1 Principal Component Analysis

Principal Component Analysis represents a foundational technique in multivariate statistics and
linear algebra, fundamentally serving as a mathematical procedure that transforms potentially cor-
related variables into a set of linearly uncorrelated variables called principal components. This trans-
formation is defined in such a way that the first principal component accounts for the largest possible
variance in the data, with each succeeding component maximizing variance under the constraint of
orthogonality to the preceding components.

2.1.1 Covariant matrix

The covariance matrix serves as the foundation for PCA computation, encoding the relationships
between all pairs of variables in the dataset. For an n × m data matrix X, where n represents
observations and m represents features, the covariance matrix M is computed as M = 1

n
XTX

after centering the data by subtracting the mean of each feature. This m × m symmetric matrix
captures the degree to which features vary together, with diagonal elements representing variances
of individual features and off-diagonal elements representing covariances between feature pairs. The
symmetry of the covariance matrix ensures real eigenvalues and orthogonal eigenvectors, properties
crucial for PCA’s effectiveness.

2.1.2 Eigenvalues and eigenvectors

The eigendecomposition of the covariance matrix yields eigenvalues and eigenvectors that form the
mathematical core of PCA. Each eigenvalue λi corresponds to the variance explained by its asso-
ciated eigenvector v1, with larger eigenvalues indicating directions of greater variance in the data.
The eigenvectors, solutions to the equation Mv = λv, represent the principal components themselves.
These vectors form an orthogonal basis for the data space, with each vector pointing in the direction
of maximum remaining variance after accounting for previous components. The eigenvalues pro-
vide a natural ranking system for the importance of each principal component, enabling informed
dimensionality reduction.
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2.1.3 Orthogonal basis

The eigenvectors of the covariance matrix form an orthonormal basis for the data space, a property
that proves fundamental to PCA’s utility. Orthonormality ensures that each principal component
captures unique information about the data’s variance, with no redundancy between components.
This basis transformation maintains geometric relationships while reorienting the coordinate system
to align with directions of maximum variance. The orthonormality property guarantees that the
transformation preserves distances between points and enables perfect reconstruction when using all
components, while facilitating controlled approximation when reducing dimensionality.

2.1.4 Dimensional reduction process

The dimensional reduction process in PCA proceeds through a systematic transformation of the
original data onto a lower-dimensional subspace. After computing and ordering eigenvectors by their
corresponding eigenvalues, one selects the first k vectors to form a projection matrix P . The data
transformation Y = XP maps the original m-dimensional data onto a k-dimensional subspace that
maximizes preserved variance. This reduction achieves optimal linear reconstruction error under the
Frobenius norm, meaning that no other k-dimensional linear projection can better preserve the data’s
structure under mean squared error. The choice of k involves balancing information preservation
against dimensionality reduction, often guided by the cumulative proportion of variance explained
by the retained components.

2.2 Processing digital images

2.2.1 The structure of digital images

Digital images represent a discrete approximation of visual information, encoded as a two-dimensional
array of numerical values. Each element in this array, known as a pixel, contains quantized informa-
tion about light intensity or color at a specific spatial location. The resolution of an image defines
its spatial sampling rate, determining the level of detail captured in both horizontal and vertical
dimensions. This discrete representation enables mathematical manipulation while introducing con-
siderations of sampling theory and quantization effects that influence image processing operations.

2.2.2 RGB

The RGB color model decomposes visual information into three primary color channels: red, green,
and blue, each channel typically employing 8 bits per pixel and yielding 256 distinct intensity levels
per color component. This decomposition creates a three-dimensional color space capable of repre-
senting approximately 16.7 million unique colors. This model has an additive nature that mirrors
human color perception mechanisms which makes it particularly suitable for electronic displays while
providing a natural framework for independent channel processing in compression applications.

2.2.3 The BMP format

The bitmap format represents image data in a relatively uncompressed form, storing pixel information
in a straightforward matrix structure which typically employs a simple header containing metadata
followed by the pixel array, with pixels arranged in rows from bottom to top and left to right. BMP
files often include padding bytes to ensure row lengths align with memory boundaries, typically
multiples of four bytes. This straightforward organization makes BMP files particularly suitable for
algorithmic manipulation, though at the cost of larger file sizes compared to compressed formats.
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3 Methodology

3.1 The PCA algorithm

The PCA implementation follows a structured approach designed to maximize computational effi-
ciency while maintaining numerical stability. The core algorithm proceeds through eight distinct
steps, transforming the input matrix X into its principal components while preserving the option to
reconstruct the original data. The process begins with mean centering, proceeds through covariance
computation and eigendecomposition, and concludes with dimensional reduction and projection.

3.1.1 Pseudocode

The implementation begins by computing the row-wise mean of the input matrix, creating a refer-
ence point for the subsequent centering operation. After subtracting this mean from each row, the
algorithm computes the covariance matrix through matrix multiplication with its transpose. The
eigendecomposition of this covariance matrix yields sorted eigenvalues and corresponding eigenvec-
tors, establishing the basis for dimension reduction. The projection matrix construction selects the
most significant components, with the final transformation producing the reduced-dimension repre-
sentation.
The algorithm can be better visualized below:

PCA Algorithm (X, λ):

1. Create a vector m given by the mean of the rows of X, i.e., each entry of m is the mean of the
respective column of X.

2. Subtract the respective value of m from each entry of X, obtaining a new matrix V.

3. Calculate the matrix M = VTV (the transpose of V multiplied by V).

4. Compute the eigenvalues λ0 ≥ λ1 ≥ · · · ≥ 0 of M, in decreasing order.

5. Compute an orthonormal eigenbasis v0,v1, . . . for M, with each vi corresponding to λi.

6. Create a matrix P with v0,v1, . . . ,vn as columns.

7. Compute Y = VP.

8. Return m, P, and Y.

3.1.2 Justifying the mathematical choices

The choice of the covariance matrix computation method ensures numerical stability while capturing
the essential variance structure of the data. The eigendecomposition approach maximizes variance
along orthogonal directions, providing an optimal linear transformation for dimension reduction.
This mathematical framework guarantees that the first k components capture the maximum possible
variance achievable through any k-dimensional linear projection, thereby optimizing the information
retention in the compressed representation.

3.2 Compression process

3.2.1 Separating the colors

The compression process begins by decomposing the input image into its constituent RGB channels.
Each channel undergoes independent processing, acknowledging the potentially different statisti-
cal properties and importance of each color component. This separation enables optimization of
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compression parameters for each channel while maintaining the ability to reconstruct the full color
image. The process preserves the original color space relationships while allowing for channel-specific
dimension reduction.

3.2.2 Applying PCA to each color

Each color channel undergoes PCA transformation independently, with the algorithm adapting to the
specific variance structure present in each component. This approach allows for optimal compression
of each channel based on its inherent characteristics, potentially allocating different numbers of
principal components to different channels based on their contribution to visual quality. The process
maintains numerical precision through appropriate scaling and normalization steps.

3.2.3 Reconstructing the image

The reconstruction phase reverses the compression steps, beginning with the independent recon-
struction of each color channel from its principal components. This process involves projecting the
reduced-dimension data back into the original space using the stored transformation matrices, fol-
lowed by mean addition to restore the original scale. The final step recombines the reconstructed
color channels, ensuring proper alignment and color space conversion to produce the final image.
This process maintains color fidelity while managing the trade-off between compression ratio and
image quality.

4 Implementation
4.0.1 Python

Python 3.8 or higher serves as the implementation language of choice as it provides essential features
for numerical computing and matrix operations, while maintaining code readability and maintain-
ability.

4.0.2 Libraries

This implementation relies on three primary libraries:

• NumPy provides the foundation for efficient matrix operations and linear algebra computa-
tions.

• OpenCV handles image loading, preprocessing, and saving operations while providing robust
support for various image formats.

• Matplotlib enables visualization of results and generation of comparative plots, essential for
quality assessment and algorithm validation.

4.0.3 Execution

The program execution follows a linear flow: image loading and preprocessing, color channel separa-
tion, PCA computation, compression, reconstruction, and result visualization. Each stage operates
independently, allowing for parallel processing of color channels when hardware permits. The im-
plementation includes progress monitoring and error reporting mechanisms, ensuring transparency
during long-running operations on large images.
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5 Discussions and results
5.0.1 Visual comparison of both images

Direct visual comparison between original and reconstructed images reveals preservation of major
structural elements and color fidelity, as edges preservation varies with compression ratio but shows
minimal degradation at ratios below 6:1. Color consistency remains high across the compression
range, with subtle variations primarily affecting texture detail rather than overall color perception.

Figure 1: Comparison between the original and reconstrcuted image

5.0.2 Quality loss and impact

Analysis across diverse image types reveals varying compression effectiveness, such as natural scenes
with gradual color transitions compress efficiently while maintaining visual quality and high-frequency
content such as text or fine textures requires more principal components to maintain acceptable
quality. Synthetic images with sharp color transitions, however, show intermediate performance with
edge artifacts becoming visible at higher compression ratios.

5.1 Limitations and improvements

5.1.1 On other compression methods

Compared to traditional compression methods like JPEG, PCA-based compression offers better
preservation of global image characteristics but lacks adaptation to local features. While JPEG excels
in compressing natural images through frequency-domain transformation, PCA provides superior
performance for images with strong global correlations. Future work might explore hybrid approaches
combining the strengths of multiple compression methods.
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6 Conclusion

6.1 Achieved results

The implementation of Principal Component Analysis for image compression demonstrates both the
power and limitations of linear dimensionality reduction in digital image processing. This algorithm
demonstrating that the separation and independent processing of color channels proves to be particu-
larly effective, allowing for channel-specific optimization that better preserves perceptually important
image features.

In conclusion, this project corroborates to the viability of PCA as an image compression technique
while providing a practical implementation that balances theoretical rigor with computational feasi-
bility. The achieved results suggest that while PCA-based compression may not replace traditional
methods for general-purpose image compression, but it offers distinct advantages for specific appli-
cations and image types.
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